Regularized latent class analysis for polytomous item responses : An application to SPM-LS data. / Robitzsch, Alexander.
In: Journal of Intelligence, Vol. 8, No. 3, 30, 14.08.2020.Research output: Contribution to journal › Journal article › Research › peer-review
}
TY - JOUR
T1 - Regularized latent class analysis for polytomous item responses
T2 - An application to SPM-LS data
AU - Robitzsch, Alexander
PY - 2020/8/14
Y1 - 2020/8/14
N2 - The last series of Raven’s standard progressive matrices (SPM-LS) test was studied with respect to its psychometric properties in a series of recent papers. In this paper, the SPM-LS dataset is analyzed with regularized latent class models (RLCMs). For dichotomous item response data, an alternative estimation approach based on fused regularization for RLCMs is proposed. For polytomous item responses, different alternative fused regularization penalties are presented. The usefulness of the proposed methods is demonstrated in a simulated data illustration and for the SPM-LS dataset. For the SPM-LS dataset, it turned out the regularized latent class model resulted in five partially ordered latent classes. In total, three out of five latent classes are ordered for all items. For the remaining two classes, violations for two and three items were found, respectively, which can be interpreted as a kind of latent differential item functioning.
AB - The last series of Raven’s standard progressive matrices (SPM-LS) test was studied with respect to its psychometric properties in a series of recent papers. In this paper, the SPM-LS dataset is analyzed with regularized latent class models (RLCMs). For dichotomous item response data, an alternative estimation approach based on fused regularization for RLCMs is proposed. For polytomous item responses, different alternative fused regularization penalties are presented. The usefulness of the proposed methods is demonstrated in a simulated data illustration and for the SPM-LS dataset. For the SPM-LS dataset, it turned out the regularized latent class model resulted in five partially ordered latent classes. In total, three out of five latent classes are ordered for all items. For the remaining two classes, violations for two and three items were found, respectively, which can be interpreted as a kind of latent differential item functioning.
KW - Methodological research and development
KW - regularized latent class analysis
KW - regularization
KW - fused regularization
KW - fused grouped regularization
KW - distractor analysis
U2 - 10.3390/jintelligence8030030
DO - 10.3390/jintelligence8030030
M3 - Journal article
VL - 8
JO - Journal of Intelligence
JF - Journal of Intelligence
SN - 2079-3200
IS - 3
M1 - 30
ER -
ID: 1409811